A novel stir bar sorptive extraction (SBSE) procedure termed sequential SBSE was developed. Compared to conventional SBSE, sequential SBSE provides more uniform enrichment over the entire polarity/volatility range for organic pollutants at ultra-trace levels in water. Sequential SBSE consists of a SBSE performed sequentially on a 5-mL sample first without modifier using one stir bar, then on the same sample after addition of 30 % NaCl using a second stir bar. The first extraction with unmodified sample is mainly targeting solutes with high Ko/w (log Ko/w > 4.0), the second extraction with modifi ed sample solution (containing 30 % NaCl) is targeting solutes with low and medium Ko/w (log Ko/w <4.0). After extraction the two stir bars are placed in a single glass desorption liner and are simultaneously desorbed. The desorbed compounds were analyzed by thermal desorption and gas chromatography – mass spectrometry (TD – GC – MS). Recovery of model compounds consisting of 80 pesticides (organochlorine, carbamate, organophosphorous, pyrethroid, and others) for sequential SBSE was evaluated as a function of log Ko/w (1.70 – 8.35). The recovery using sequential SBSE was compared with those of conventional SBSE with or without salt addition (30 % NaCl). The sequential approach provided very good recovery in the range of 82 to 113 % for most of the solutes, and recovery less than 80 % for only 5 solutes with low Ko/w (log Ko/w <2.5), while conventional approaches (with or without salt addition) showed less than 80 % recovery for 23 and 41 solutes, respectively. The method showed good linearity (r2 > 0.9900) and high sensitivity (limit of detection: < 10 ng/L) for most of the model compounds even with the scan mode in the MS. The method was successfully applied to screening of pesticides at ng/L level in river water samples.

Twister® / Stir Bar Sorptive Extraction (SBSE)

The GERSTEL Twister® enables efficient extraction of organic compounds from aqueous matrices based on Stir Bar Sorptive Extraction (SBSE). SBSE is a solvent-free extraction technique, which is significantly faster than most conventional extraction techniques. SBSE is up to 1000x more sensitive than SPME since the stir bar has significantly more sorbent volume and since it can extract, and concentrate analytes from, a much larger sample volume due to the efficient stirring.