The analysis of flavor compounds in dairy products such milk, cream, yoghurt and cheese as well as their blends with several ingredients usually requires cumbersome sample preparation steps such as liquid/liquid extraction, solid phase extraction or distillation techniques, often with the drawback of organic solvent use. Headspace and purge & trap methods do not use organic solvents, but their analyte range is restricted to volatile compounds and therefore characterize compounds that contribute to the aroma/smell of a sample, not flavor/taste. In addition heating of the sample should be avoided since this would lead to reaction products which dramatically modifiy the flavor and taste of any dairy product. The sensitivity of solid phase microextraction (SPME) is limited by the small amount of sorptive material that can be coated on the fibers.

A new extraction technique, Stir Bar Sorptive Extraction (SBSE), recently described by Pat Sandra et.al. [1], that overcomes the major problems with classical extraction techniques is applied in this paper. With this technique, a small stir bar (10-20mm length, 1.3mm OD) is coated with polydimethylsiloxane (1mm d.f.), placed directly in the sample, and stirred for about 1 hour. During this time, analytes are extracted into the PDMS phase, which acts as an immobilized liquid phase. The stir bar is removed, rinsed with distilled water, and placed into a thermal desorption unit. Due to the hydrophobic character of PDMS, a drying step is not necessary. Heating the stir bar releases the extracted compounds into a GC-MS system for subsequent analysis with very low detection limits (parts per trillion).

Twister® / Stir Bar Sorptive Extraction (SBSE)

The GERSTEL Twister® enables efficient extraction of organic compounds from aqueous matrices based on Stir Bar Sorptive Extraction (SBSE). SBSE is a solvent-free extraction technique, which is significantly faster than most conventional extraction techniques. SBSE is up to 1000x more sensitive than SPME since the stir bar has significantly more sorbent volume and since it can extract, and concentrate analytes from, a much larger sample volume due to the efficient stirring.